quinta-feira, 11 de julho de 2013

Frações: Soma, multiplicação, divisão e subtração

Antes, alguns conceitos básicos...

Fração é uma forma de representar uma quantidade a partir de um valor, que é dividido por um determinado número de partes iguais.

Por exemplo, o número 1 que é dividida por 4 partes, fica :


Na forma genérica, a fração é representada pelas letras a e b, onde o termo superior é a, e o inferior é b.


Em alguns textos, encontra-se a fração escrita também assim: a/b. Isso ocorre por causa de algumas  limitações de edição de texto, mas é a mesma coisa (a = numerador, e b = denominador).

Veja a imagem abaixo:

O retângulo foi dividido em duas partes, e podemos dizer que a parte em vermelho é corresponde ao numerador, de algo que possui duas partes (o denominador).

Vejamos mais algumas imagens:

Ambos os retângulos foram divididos em quatro partes, e destas quatro partes, na primeira imagem estamos considerando duas partes (em vermelho), e na segunda imagem estamos considerando três partes.


Agora observe que, sendo a figura dividida em quatro partes, e considerando as quatro partes, podemos afirmar que temos um inteiro.




Soma

Quando as frações têm o mesmo denominador, a soma ocorre de forma simples.

Somamos apenas o numerador, conservando o denominador:

Simplificando, podemos dizer que o resultado desta soma é 10, pois se dividimos 30 por 3, é igual a 10, e 3 por 3, é igual a 1. Toda fração em que o denominador é 1, ele pode ser desconsiderando, logo, usando apenas o número 10.


Quando as frações têm denominadores diferentes, a soma acontece da seguinte forma:

Sendo os denominadores diferentes, é necessário encontrarmos o MMC de 4 e 3:

4 = {4, 8, 12, 16...}
3 = {3, 6, 9, 12, 15...}

MMC (4,3) = 12.


Agora, é preciso dividir o MMC encontrado, ou seja, o 12, pelo denominador de cada fração, e multiplicar o resultado dessa divisão pelo numerador. 
Portanto fica assim:

Subtração

Subtrair frações é parecido com a Soma. Sendo os denominadores iguais, basta conservá-los, e efetuar a conta com o numerador.
Mas se os denominadores forem diferentes, para fazer o cálculo, é preciso encontrar o MMC.

8 = {8, 16, 24, 32...}
6 = {6, 12, 18, 24, 30...}

MMC (6, 8) = 24.

Como na Soma, é preciso dividir o MMC encontrado, ou seja, o 12, pelo denominador de cada fração, e multiplicar o resultado dessa divisão pelo numerador.

Então vai ficar assim:

24/8=3x6=18
24/6=4x4=16.


Multiplicação

A multiplicação de frações é bastante simples. Basta você multiplicar o numerador com o numerador e o denominador com o denominador. Veja:


Divisão

Para dividir frações, você deve repetir a primeira fração e multiplicar pelo inverso da segunda fração. Veja na imagem:


Temos então 2x6=12 e 3x4=12, ou seja:




FONTES:
http://www.matematicadidatica.com.br/Fracao.aspx
http://www.profcardy.com/cardicas/como-somar-ou-subtrair-fracao.php

Um comentário: